The Hausdorff dimension of the harmonic measure for relatively hyperbolic groups

نویسندگان

چکیده

The paper studies the Hausdorff dimension of harmonic measures on various boundaries a relatively hyperbolic group which are associated with random walks driven by probability measure finite first moment. With respect to Floyd metric and shortcut metric, we prove that equals ratio entropy drift walk. If is infinitely-ended, same formula obtained for end boundary endowed visual metric. In addition, identified growth rate word These results complemented characterization doubling metrics accessible infinitely-ended groups: if only virtually free. Consequently, there at least two different bi-Hölder classes (and thus quasi-symmetric classes) boundary.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Dimension of Relatively Hyperbolic Groups

Suppose that a finitely generated group G is hyperbolic relative to a collection of subgroups {H1, . . . ,Hm}. We prove that if each of the subgroups H1, . . . ,Hm has finite asymptotic dimension, then asymptotic dimension of G is also finite.

متن کامل

Hausdorff Dimension of the Harmonic Measure on Trees

For a large class of Markov operators on trees we prove the formula HD = h=l connecting the Hausdorr dimension of the harmonic measure on the tree boundary, the rate of escape l and the asymptotic entropy h. Applications of this formula include random walks on free groups, conditional random walks, random walks in random environment and random walks on treed equivalence relations. 0. Introducti...

متن کامل

The Conjugacy Problem for Relatively Hyperbolic Groups

Solvability of the conjugacy problem for relatively hyperbolic groups was announced by Gromov [12]. Using the definition of Farb of a relatively hyperbolic group [9], we prove this assertion. We conclude that the conjugacy problem is solvable for the following two classes of groups: fundamental groups of complete, finite-volume, negatively curved manifolds, and finitely generated fully residual...

متن کامل

Limit Groups for Relatively Hyperbolic

We begin the investigation of Γ-limit groups, where Γ is a torsion-free group which is hyperbolic relative to a collection of free abelian subgroups. Using the results of [16], we adapt the results from [21] and [22] to this context. Specifically, given a finitely generated group G, and a sequence of pairwise non-conjugate homomorphisms {hn : G → Γ}, we extract anR-tree with a nontrivial isomet...

متن کامل

Relatively hyperbolic Groups

In this paper we develop some of the foundations of the theory of relatively hyperbolic groups as originally formulated by Gromov. We prove the equivalence of two definitions of this notion. One is essentially that of a group admitting a properly discontinuous geometrically finite action on a proper hyperbolic space, that is, such that every limit point is either a conical limit point or a boun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2023

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/btran/145